Physics: Why is electric field between parallel plates constant, but not between two point charges?

The tutor discusses the electric field between two parallel plates, then between two point charges.

A consequence of Gauss’s Law is that, from an infinite charged plane, the electric field is constant, independent of distance, and given by

E = σ/2εο

where

σ = the charge density of the plane in N/m2

εο = 8.854187817 x 10-12, the permittivity of free space.

In a real capacitor, if the plates are much higher and broader than their separation, then at a point between them, collinear with their centres, the effect is probably comparable to two infinite planes of charge. In that case, the field, regardless of position along that centre line, is given by

Enet = E2 – E1

Now, a different premise: we imagine point P between two charged particles, q1 and q2, such that q1, P, and q2 are all collinear. In this situation the field at point P depends on its position between q1 and q2 and is given by

Enet = E2 – E1 = kq2/r22 – kq1/r12

where

k = 1/(4π*εο) = 9.0 x 109

r1 = the distance from P to q1

r2 = the distance from P to q2

Source:

Serway, Raymond A. Physics for Scientists and Engineers with modern physics, 2nd ed. Toronto: Saunders College Publishing, 1986.

Jack of Oracle Tutoring by Jack and Diane, Campbell River, BC.

Tagged with: , ,

Leave a Reply