The tutor checks an infinite series for convergence. Number 22, page 545, of Larson and Hostetler1 asks about the convergence of the series Σ2∞(n-1(n2-1)-0.5) Solution: First, we realize that, for n>1, n2-1 > (n-1)2 Therefore, Σ2∞(n-1(n2-1)-0.5) < Σ2∞(n-1((n-1)2)-0.5)=Σ2∞(n(n-1))-1 In turn, …

Calculus: convergence (or divergence?): Σ2(n-1(n2-1)-0.5) Read more »