Thermodynamics: first law, with compression of a gas

The tutor begins about thermodynamics with the example of compressing a gas.

Thermodynamics is the analysis of energy – particularly, how it moves and/or changes form. The First Law of Thermodynamics is the Law of Conservation of Energy: Energy cannot be created or destroyed, but merely moves or changes form.

Let’s imagine a system that has internal energy U. Then U can change only by work or heat (Δ means change):

ΔU = q + w,

q= heat,
w=work.

If q is negative, heat is leaving the system; if w is negative, the system is doing work against its environment.

The internal energy of an ideal gas is directly proportional to its temperature: specifically,

U = 1.5nRT, where

n= moles of gas present
R=8.315J/(K*mol), which is the gas constant
T=temperature in Kelvin

As a gas is compressed, work is done to it (so w is positive). Let’s imagine rapid compression that does not allow time for heat to escape, so q=0. Then according to

ΔU = q + w,

U must increase. Since

U = 1.5nRT

the temperature of the (ideal) gas must rise with compression.

The rise of temperature during compression enables diesel engines and refrigerators to work.

Source:

Giancoli, Douglas C. Physics, 5th ed. New Jersey: Prentice Hall, 1998.

Jack of Oracle Tutoring by Jack and Diane, Campbell River, BC.

Leave a Reply